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Foreword

In a relative short time interval of about two years multicore processors became the
standard. As multiple cores provide a substantially higher processing performance than
their predecessors, their memory and I/O subsystems need also be largely enhanced to
avoid processing bottlenecks. Consequently, while discussing multicore processors the
focus of interest shifts from their microarchitecture to their macroarchitecture
incorporating their cache hierarchy, the way how memory and I/O controllers are
attached and how on-chip interconnects needed are implemented.

Accordingly, the first nine Sections are devoted to the design space of the
macroachitecture of multicore processors. Particular Sections deal with the main
dimensions that span the design space and identify how occuring concepts became
implemented in major multicore lines.

Section 10 is a huge repository, providing relevant materials and facts published in
connection with major multicore lines. In a concrete course appropriate parts of the
repository can be selected according to the scope and attendance of the course. Each
part of the repository concludes with a list of available literature to allow a more detailed
study of a multicore line or processor of interest.
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1. Introduction



Figure 1.1: Processor power density trends 

Source: D. Yen: Chip Multithreading Processors Enable Reliable High Throughput Computing 

http://www.irps.org/05-43rd/IRPS_Keynote_Yen.pdf 
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Figure 1.2: Single-stream performance vs. cost 

Source: Marr T.T. et al. „Hyper-Threading Technology Architecture and Microarchitecture

Intel Technology Journal, Vol. 06, Issue 01, Febr 14, 2002, pp. 4-16
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1. Introduction (3)

Figure 1.3: Historical evolution of transistor counts, clock speed, power and ILP



2. Overview of MCPs



Figure 2.1: Intel’s dual-core mobile processor lines
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Figure 2.2: Intel’s multi-core processor lines
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Figure 2.3: Intel’s dual-core Xeon UP-line
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Figure 2.4.: Intel’s dual-core Xeon DP-lines
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Figure 2.5.: Intel’s dual-core Xeon MP-lines
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Figure 2.6.: Intel’s dual-core EPIC-based server line
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Figure 2.7.: AMD’s multi-core desktop processor lines
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Figure 2.8.: AMD’s dual-core high-end desktop/entry level server Athlon 64 FX line
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Figure 2.9.: AMD’s dual-core Opteron UP-lines
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Figure 2.10.: AMD’s dual-core Opteron DP-lines
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Figure 2.11.: AMD’s dual-core Opteron MP-lines
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Figure 2.12.: IBM’s multi-core server lines

POWER4 POWER4+

POWER5 POWER5+

Cell BE

POWER6

8CST

174 mtrs./115/125 W

10/01 11/02

QCMT

QCST

DCMT

DCST

2001 2002

3Q 4Q 3Q 4Q

~~
~~

5/04

2004

1Q 2Q

~~

10/05

276 mtrs./70 W

3Q 4Q

2006

234 mtrs./95 W

2006

1Q 2Q 3Q 4Q

2007

750 mtrs./~100W

2007

1Q 2Q

180 nm/412 mm2

90 nm/230 mm2

90 nm/221 mm2

65 nm/341 mm2

276 mtrs./80W (est.)

130 nm/389 mm2

184 mtrs./70 W

130 nm/380 mm2

2-way MT/core 2-way MT/core

(PPE:2-way MT)

2-way MT/core

(SSEs: no MT)

2. Overview of MCPs (12)



Figure 2.13.: Sun’s and Fujitsu’s multi-core server lines
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Figure 2.14.: HP’s PA-8x00 server line
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Figure 2.15.: RMI’s multi-core XLR-line (scalar RISC)
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3. Design space of the macro architecture
of MCPs



Building blocks of multicore processors (MC)

Cores•

L2 cache(s) (L2)•

FSB controller (FSB c.)•

Bus controller (B. c.) •
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Memory controller (M. c.)•

Interconnection network (IN)•
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3. Design space of the macro architecture of MCPs (1)
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3. Design space of the macro architecture of MCPs (2)
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interconnections



4. Layout of the cores
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caches

Layout of the 
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memory architecture
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(if available)

5. Layout of the cores (1)

Layout of the on-chip 
interconnections

Macro architecture of multi-core (MC) processors
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4. Layout of the cores (3)

HMC
(Heterogeneous MC)

Basic layout

SMC
(Symmetrical MC)

Cell BE (1 PPE+8 SPE)All other MCs



4. Layout of the cores (4)

Virus
protection

Advanced features of the cores

Remote
management

Power/clock 
speed management

Data
protection

Support of
virtualisation

Details on the next slide!



4. Layout of the cores (5)

1

2
Pentium M-based line: Core Duo T2000

Prescott based desktop lines:Pentium D 8xx, EE 840 

3

Xeon lines: Paxwille DP, MP

Cedar Mill based desktop lines: Pentium D 9xx, EE 955,965

4 Core basd mobile line: T5xxx/T7xxx (Merom)

desktop line: Core 2 Duo E6xx, X6xxx, QX67xx

Xeon lines: 5000 (Dempsey), 7100 (Tulsa)

Xeon lines: 3000, 5100 (Woodcrest), 5300 (Clovertown)
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Cedar Mill-based3
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AMD
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Nx-bit Cool 'n' Quiet Pacifica (partly)
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ED-bit EIST 5/02

ED-bit

ED-bit

EIST (partly)

EIST (partly)

EIST (partly) Vanderpool (partly)

DBS Silvervale

Nx-bit

Nx-bit

Nx-bit

Cool 'n' Quiet
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PowerNow!

Pacifica

AMD - V

AMD - V

Power/clock speed
management

Support of
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Data
protection

Remote
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Virus
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Table 4.1 : Comparison of advanced features provided by Intel’s and AMD’s MC lines. 
For a brief introduction of the related Intel techniques see the appropriate Intel processor descriptions



EIST: Enhanced Intel SpeedStep Technology

First implemented in Intel’s mobile and server platforms,

It allows the system to dynamically adjust processor voltage and core frequency,
to decrease average power consumption and thus average heat production.

This technology is similar to AMD’s Cool’n’Quiet and PowerNow! techniques. 
For more information see http://en.wikipedia.org/wiki/SpeedStep 

The ED bit with OS support is now a widely used technique to prevent certain classes of 
malicious buffer overflow attacks. It is used e.g. in Intel’s Itanium, Pentium M, Pentium 4 Prescott
and subsequent processors as well as in AMD’s x86-64 line (designated as the NX bit (No Execute bit).

In buffer overflow attacks a malicious worm inserts its code into another program’s data space
and creates a flood of code that overwhelms the processor,
allowing the worm to propagate itself to the network, and to other computers. 

The Execute Disable bit allows the processor to classify areas in memory
by where application code can be executed and where it cannot. Actually, the ED bit is implemented
as the 63. bit of the Page Table Entry. If its value is 1, code cannot be executed from that page.

When a malicious worm attempts to insert code in the buffer,
the processor disables code execution, preventing damage and worm propagation.
To became active the ED feature need to be supported by the OS.
For more information see: http://en.wikipedia.org/wiki/XD_Bit

ED: Execute Disable bit (often designated as the NX bit (No Execute bit))

Brief description of the advanced features pointed out while using Intel’s notations (1)
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Virtualisation techniques allow a platform to run multiple operating systems and applications
in independent partitions. The hardver support improves the performance and robustness 
of traditional software-based virtualization solutions. 
Intel introduced hardware virtualisation support first in its Itanium line (called the Silvervale tecnique)
followed by its Presler based and subsequent processors (designated as the Vanderpool technique).

AMD uses this technique in its recent lines - dubbed as Pacifica - since Mai 2006. For more information
see http://en.wikipedia.org/wiki/Virtualization_Technology

VT: Virtualization Technology

It is a Trusted Execution Technology to protect users from software-based attacks aimed at stealing vital
data, initiated by Intel. It includes a set of hardware enhancements intended to provide multiple separated
execution environments.

For more information see  Intel® Trusted Execution Technology
Preliminary Architecture Specification at http://www.intel.com/technology/security/ or
http://en.wikipedia.org/wiki/LaGrande_Technology 

Intel’s Active Management Technology is a feature of its vPro technology. It allows to manage
the computer system remotely, even if the computer is switched off or the hard drive has failed. By 
means of this technology system administrators can e.g. remotely download software updates or 
fix and hail system problems. It can also be utilized to protect the network by proactively blocking 
incoming threats. 

For more information see Intel Active Management Technology at 
http://www3.intel.com/cd/network/communications/emea/eng/203372.htm

La Grande Technology

AMT2

4. Layout of the cores (7)

Brief description of the advanced features pointed out while using Intel’s notations (2)

http://www.intel.com/technology/security/downloads/315168.htm
http://www.intel.com/technology/security/downloads/315168.htm
http://www.intel.com/technology/security/downloads/315168.htm
http://www.intel.com/technology/security/or
http://www.intel.com/technology/security/or
http://www.intel.com/technology/security/or
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5. Layout of L2 caches
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Lines replaced (victimized) in the L1 are written to L2.

References to data missing in L1 but available in L2 
initiate reloading the pertaining cache line to L1.
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Figure 5.1: Implementation of exclusive L2 caches 

Source: Zheng, Y., Davis, B.T., Jordan, M.: “ Performance evaluation of exclusive cache hierarchies”, 

2004 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 

2004, pp. 89-96.
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UltraSPARC T1 (2005) (Niagara)
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Core

X-bar

Core

L2 L2

Memory

M. c.

Memory

M. c.

The 128-byte long L2 cache lines are hashed across
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Figure 5.2: Alternatives of mapping addresses to memory modules

Mapping of addresses to memory modules
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6. Layout of L3 caches
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Lines replaced (victimized) in the L2 are written to L3.
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Examples of partially integrated L3 caches:
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6. Layout of L3 caches (14)

Figure 6.1: Cache architecture of MC processors

(Not differentiating between inclusive/exclusive alternatives in the figure, but denotingit in the examples)
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6. Layout of L3 caches (15)

Examples for cache architectures (1)
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UltraSPARC T1 (2005)
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6. Layout of L3 caches (17)

UltraSPARC IV+ (2005)
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7. Layout of memory and I/O architecture
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7. Layout of memory and I/O architecture (2)

The concept of 
connection

Layout of the I/O and memory connection

Point of attachment
Physical implementations 

of the M. c.



7. Layout of memory and I/O architecture (3)

Connection via the FSB

The concept of connection

Connection via the M. c and B. c

Used typically in connection with 
off-chip M. c.-s

Used in connection with 
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7. Layout of memory and I/O architecture (4)

The highest cache level 
(via an IN)

The point of attachment

The IN connecting the two 
highest cache levels
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7. Layout of memory and I/O architecture (5)
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7. Layout of memory and I/O architecture (6)

The highest cache level 
(via an IN)

The point of attachment

The IN connecting the two 
highest cache levels

L2 
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L3 
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The IN connecting a 
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7. Layout of memory and I/O architecture (7)
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In case of a two-level cache hierarchy In case of a three-level cache hierarchy



7. Layout of memory and I/O architecture (8)

UltraSPARC T1 (2005) UltraSPARC IV+ (2005)

Examples for attaching memory and I/O via the interconnection network connecting 
the two highest levels of the cache hierarcy

In case of a two-level cache hierarchy In case of a three-level cache hierarchy
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Off-chip memory controller On-chip memory controller

Integration of the memory controller to the processor chip

POWER4 (2001)

UltraSPARC IV+ (2005)

POWER5 (2005)

Montecito (2006?)

UltraSPARC T1 (2005)

UltraSPARC IV (2004)

Athlon 64 X2 (2005)Presler (2005)

Smithfield (2005)

PA-8800 (2004)
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Core (2006)

Yonah Duo (2006)

Expected trend

7. Layout of memory and I/O architecture (9)

Longer access times,
but provides independency of 

memory technology

Shortens access times,
but causes dependency of 

memory technology and speed



8. Layout of the on-chip interconnections
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Macro architecture of multi-core (MC) processors



8. Layout of interconnections (2)
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8. Layout of interconnections (3)

Arbiter/Multi-port cache 
implementations

Crossbar

Implementation of interconnections

Ring

For a small number of
sources/destinations

For a larger number of
sources/destinations

Cell BE (2006)
XRI (2005)

eg. to connect dual-cores
to shared L2 caches

UltraSPARC T1 (2005)
UltraSPARC T2 (2007)

Quantitative aspects, such as the number of sources/destinations or bandwidth requirement affect 
which implementation alternative is the most beneficial.



9. Basic alternatives of macro-architectures of 
MC processors



9. Basic alternatives of macro-architectures of MC processors (1)

Basic dimensions spanning the design space

• Kind of related cache architecture

• Layout of the memory and I/O connection

• Layout of the IN(s) involved

• Cache inclusivity affects the layout of the memory connection

Interrelationships between particular dimensions



9. Basic alternatives of macro-architectures of MC processors (2)

Considering a selected part of the design space of the 
macroarchitecture of MC processors

Assumptions:

• L2 is supposed to be partially integrated on the chip (i.e. only the tags are on
the chip). This is not indicated in the design space tree but denoted in the examples.          

• The kind of the implementation of the involved INs is not considered.

• In case of an off-chip M. controller the use of an FSB is assumed.

• A two-level cache hierarchy is considered (no L3).



9. Basic alternatives of macro-architectures of MC processors (3)

Off-chip M. c. On-chip M. c.

Design space of the macroarchitecture of MC processors 
(in case of a two-level cache hierarchy)

L2 private L2 shared L2 private L2 shared

Part of the design-space 
specifying the point of attachment 

for the memory and I/O



9. Basic alternatives of macro-architectures of MC processors (4)

Core 2 Duo based processors (2006)
(2 cores)

SPARC64 VI (2007)
(2 cores)

SPARC64 VII (2008)
(4 cores) 

Smithfield/Presler based processors (2005/2006)
(2 cores)

PA-8800 (2004)
(2 cores, L2 data off-chip)
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Design space of the macroarchitecture of MC processors (2-level hierarchy) (1)



9. Basic alternatives of macro-architectures of MC processors (5)

Design space of the macroarchitecture of MC processors (2-level hierarchy) (2)

M. c. on-chip

L2 private
L2 shared

Attaching both I/O 
and M. c. to L2 via IN2

Attaching M. c. to L2 
via IN2 and I/O to IN1

Attaching both I/O 
and M.c. via IN1

Attaching I/O. to L2 via 
IN2 and M.c. to IN1
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Athlon 64 X2 (2005)
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